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Symmetry coordinates are used to describe nuclear configurations of MX 4 molecules that can be regarded as 
distorted versions of T a symmetrical reference structures. This approach provides a basis for assessing 
approximate symmetries and for testing the validity of averaging over observed molecular parameters. The 
construction of kernel or co-kernel configurations, allowing for the equation of constraint among the six bond 
angles, is described. 

1. Introduction 

Many small molecules possess high symmetry in an 
isotropic environment but exhibit significant deviations 
from this symmetry in the crystalline state. For 
example, although the isolated phosphate ion (PO43-) is 
expected to have T d symmetry, a study of 211 
examples in the solid state (Baur, 1974) showed that 
only one possessed this symmetry exactly; most had no 
symmetry whatsoever. Several attempts have been 
made to describe the kinds of distortion that occur and 
the forces responsible for them and to search for 
correlations between observed structural parameters in 
the distorted species (McDonald & Cruickshank, 1967; 
Baur, 1970, 1974; Brown & Shannon, 1973; 
Louisnathan & Gibbs, 1972; Lager & Gibbs, 1973). 
From these studies one becomes aware of the lack of a 
general method of describing distortions of molecules 
from reference configurations with a given symmetry. 
Jorgensen (1971) has stated that one of the main 
problems of applied group theory is to investigate the 
physical significance of the phrase 'The molecule M X  N 
almost has the symmetry G' though it may seem 
intuitively clear to the chemist. 

Symmetry coordinates have been much used for 
discussing molecular vibrations (Wilson, Decius & 
Cross, 1955). In this paper we describe the use of 
symmetry coordinates for analysing static distortions 
of M X  4 molecules from T a symmetry. Results for 
several classes of M X  4 molecules in various crystal 
environments are discussed in the following paper. 

2. Description of distorted molecules 

Say we wish to describe the observed structure of a 
molecule as a distorted version of a more symmetrical 
reference molecule with the same atomic connectedness 
or constitution. We may then express the overall 
distortion in terms of a total displacement vector 
D = d j p j  where dj 's  a r e  components along some set of 
displacement coordinates, pj. Insofar as we can ignore 
the absolute position and orientation of our molecule, it 
is often convenient to use internal displacement 
coordinates. For a molecule consisting of N atoms 
there are 3N - 6 such coordinates that are linearly 
independent. Alternatively, we may choose a new 
coordinate system in which the basis vectors are 
particular linear combinations of the internal displace- 
ment coordinates that transform according to the 
irreducible representations of the point group G of the 
reference molecule. A set of basis vectors with this 
property is called a set of symmetry displacement 
coordinates Si, and methods of deriving such coordi- 
nates are described in most books on applied group 
theory. Since the number of internal coordinates 
sometimes exceeds the number of degrees of freedom, 
the choice of independent and redundant symmetry 
coordinates is not always unique. For some molecules 
this point is discussed in the literature on normal 
coordinate analysis. 

In terms of symmetry displacement coordinates the 
total displacement vector can be written D = D i S  i = 
D i T i jp j .  Since the transformation is unitary, the matrix 
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T that transforms the initial basis vectors pj into the 
new basis vectors S i also transforms the initial 
displacements d i into the new symmetry displacements 
D i. For this reason the distinction between the 
symmetry displacement coordinates Si and the sym- 
metry displacements D i along these coordinates is often 
ignored. 

Given the point group G and internal parameters 
dj(ref) of the reference molecule, we can construct 
the total displacement vector D = djpj = [dj(obs) - 
dj(ref)lpj from the parameters dj(obs) of the observed 
molecule. In transforming dj to symmetry displace- 
ments D i the actual values of dj(ref) are important only 
for the totally symmetric symmetry coordinate, since 
they cancel out for all the others. 

The operation of the total displacement vector on the 
reference structure leads to the observed structure; this 
could also be reconstructed by distorting the reference 
structure along each Si in turn and summing the 
corresponding displacements. A displacement along an 
S i transforming as the totally symmetric irreducible 
representation (IR) produces a configuration with the 
same symmetry as the reference structure, whereas a 
displacement along any other S i leads to a con- 
figuration of lower symmetry. 

An arbitrary displacement along a symmetry coor- 
dinate transforming as the irreducible representation 
Fi(G ) is transformed into itself by those operations of G 
whose character in Fj(G) equals the character of the 
identity operation. 

The point group composed of these operations is 
called the kernel K of the representation; it is an 
invariant subgroup of G (that is, it contains complete 
classes of operations of G). 

In addition, a displacement transforming as a 
degenerate representation may also be transformed into 
itself by other operations not belonging to the kernel. 
The point group composed of these operations plus the 
kernel operations is called a co-kernel CoK of the 
representation; it is a non-invariant subgroup G (i.e. it 
does not consist exclusively of complete classes of 
operations of G). 

Co-kernels for degenerate representations of all 
common point groups have been derived by McDowell 
(1965). They are given in Table 1 (together with the 
kernels) for the irreducible representations of T a. 

Table 1. Kernel and co-kernel symmetries f o r  irre- 
ducible representations o f  T d 

Irreducible 
representation Kernel K Co-kernels CoK 

AI T d - 
A 2 T - 
E D 2 D2a 
Tl C1 $4, C3, Cs 
I"2 Ci C3~,C2~,C~ 

3. Kernel, co-kernel and averaged configurations 

Just as the operation of the total displacement vector on 
the reference structure leads to the observed structure, 
so a subset of symmetry displacements can be chosen 
to produce the structure of an idealized molecule that 
contains only a part of the overall distortion of the 
observed molecule. Such a structure can be selected to 
have particular kernel or co-kernel symmetries, and we 
shall refer to it as a kernel or co-kernel configuration. A 
subset of symmetry displacements belonging to a 
particular representation produces a configuration 
which necessarily has the kernel symmetry of that 
representation, and appropriately chosen subsets may 
lead to configurations with co-kernel symmetries. 

If the transformation from internal displacement 
coordinates (pj) to symmetry displacement coordinates 
(Si) is given by Si=  Tijpj, then D i=  Tijd j and dj = 
(T-l) i jDi = TjiD r The parameters of the kernel or co- 
kernel configuration are then dj(K) or dj(CoK) = 
dj(ref) + TjiD i summed over the relevant subset of 
symmetry displacements. The kernel or co-kernel 
configurations thus correspond to the configurations 
that the molecule would have if certain symmetry 
displacements were zero. 

Any idealized configuration obtained by appropriate 
averaging over the internal parameters of a molecule is 
a kernel or co-kernel configuration. On the other hand, 
not every kernel or co-kernel configuration can be 
obtained by a simple averaging process (§ 4.3). This is 
because a configuration of symmetry k obtained by 
averaging includes displacements along all symmetry 
coordinates whose kernel or co-kernel symmetry is k 
plus all coordinates whose kernel or co-kernel sym- 
metries are supergroups of k. Thus kernel or co-kernel 
configurations pertaining to particular non-totally 
symmetric IR's cannot be obtained by averaging. 

There is a difficulty. It may turn out that a kernel or 
co-kernel configuration as defined above (as well as an 
averaged configuration) may actually correspond to a 
structure that is geometrically unfeasible in three- 
dimensional space. This will be the case if the number 
of internal coordinates used to construct the symmetry 
coordinates exceeds the number of independent coor- 
dinates and if the displacement along any redundant 
coordinate depends on the displacements along the 
remaining coordinates. Examples are the symmetry 
coordinates built from the N ( N  - 1)/2 angles subten- 
ded at an N-coordinated atom (N > 3). An illustration 
of this kind of problem is given in § 4.3 where ways of 
circumventing it are discussed. 

4. M X  4 molecules 

4.1. Symmetry  coordinates o f  M X  4 molecule with 
G = T  a 

The internal coordinates r 1, r 2, r3, r4, 012 , 013 , 014 , 023 , 
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024 , 034 t ransform as 2A 1 + E + 2T2; symmet ry  
coordinates m a y  be chosen as: 

S 1 (A 1) = ½ (rl + r2 + r3 + r4)  

S3a (T2) = ½ (rl + r 2 -- r 3 -- r4) 

S3b (T2) = ½ (rl -- r 2 + r 3 -- r4) 

S3c(T2) = ½ ( r l - -  r2--  r3 + r4) 

1 
S2a(E ) = V/1----~ (2012 --  013 --  014 -- 023 -- 024 + 2034) 

S2b(E) = ½ ( 0 1 3 -  0 1 4 -  023 + 024 ) 

For infinitesimal angular  displacements,  the positive 
and negative deviations from 109 ° 28'  cancel,  so that  
the totally symmetr ic  angular  displacement  is redun- 
dant [Ds(AI)  = 0]. There are thus nine linearly 
independent symmet ry  coordinates,  four involving r ' s  
and five involving O's. 

The above symmet ry  coordinates have been chosen 
in a self-consistent way,  that is, the part icular linear 
combinat ions  of  r 's  and O's t ransforming as T 2 match  in 
pairs. For  example,  S3a and S4a with C2v co-kernel 
symmet ry  are t ransformed into themselves by the same 
twofold axis, C2(x), and mirror planes, o(xyy)  and 
e(xyp),  and similarly for the other two matching  pairs 
(Fig. 1). However,  the above choice is in no way unique 
and several other sets of  self-consistent symmet ry  
coordinates can be chosen. One such choice would be: 

1 
S4 a ( t 2 )  = ~ (012 --  034 ) Vz 

1 
so, : (so + so + so) 

V ~  

1 
S4 b (T2)  = ~ ( 0 1 3 -  024 ) V z  

1 
so, = ( 2 s o -  s o -  

v o  

1 
S4c(T2)  = ~ (014- -  023) 

v z 

1 
S 5 ( A I )  = / r  (012 + 013 + 014 + 023 + 024 -I- 034 ). (1)  

VO 

A displacement  along any single coordinate produces a 
configuration with the kernel or co-kernel symmetry .  

The six angles are not independent,  being related by 
the condit ion 

1 c o s  012 c o s  013 c o s  014 
COS 012 1 COS 023 COS 024 
COS 013 COS 023 1 COS 034 
COS 014 COS 024 COS 034 1 

=o.  (2) 

, ~ , d '  "z'̂ '̂ 

x , , ,  ~ Y 

,C3(xxx) 

Fig. 1. Projection of MX 4 molecule showing ligands 1 and 2 above 
the plane of the paper, ligands 3 and 4 below. The X axis of the 
Cartesian coordinate system runs perpendicular to the plane of 
the paper. 

1 
So, =- ~ (S b - So) (3) 

Vz 

leading to 

1 
S3a,(T2) = ---7~, ~ ( 3 r l -  r 2 -- r 3 -- r4) 

VlZ 

1 
S3b,(T2) = ~ ( 2 r 2 -  r 3 - -  r4)  

V o  

1 
S3c,(T2)  = ~ ( r 3 -  r4) 

V z  

1 
S4a, (T2)  = ~ (012 + 013 + 014 --  023 --  024 --  034 ) 

v o  

1 
S4b,(T2)  = ---7~. ~ (2012 -- 013 - -  014 --}- 023 -Jr- 024 - -  2034 ) V l z  

S4c,(T2)  = 1 (013 _ 014 -4- 023 - 024 ). (4) 

The relation between the two coordinate systems is 
shown in Fig. 2. 

Alternatively,  the radial and angular  T 2 displace- 
ments  can each be referred to a set of  four equivalent,  
l inearly dependent,  symmet ry  coordinates Sa,,, Sb,,, So,,, 
Sa,, (running along the four C 3 axes of  a tetrahedron).  
Displacements  along each of  these show C3v co-kernel 
symmetry .  
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Sc 

S a 
Sa 

~ S a, 

( Sc S b 

S b , 

Fig. 2. Symmetrv displacement.coordinates. Left: the relation be- 
tween Sa(Tz), S0(T 0, Sc(T2) and Sa,(Tz). A displacement along 
S~, S O or S c corresponds to a C2v co-kernel configuration, one 
along S a, to a C3v co-kernel configuration. Displacements on any 
of the three circles intersecting on S,, correspond to C s co-kernel 
configurations. Right: relation between unprimed and primed 
displacement coordinates with S a, S,, and S 0, in the plane of the 
paper. 

Fig. 3. Scheme showing that the sum of two different C3~ co-kernel 
configurations is a C2v co-kernel configuration. 

Fig. 4. The two orthogonal symmetry displacement coordinates 
S a (E) (left) and S b (E) (right). 

conserving C3, symmet ry  (Fig. 3), and similarly for 
other kinds of  distortion. 

Similarly, the E displacement (Fig. 4) may  be referred 
to a set of  three equivalent, linearly dependent,  
symmet ry  coordinates 

1 
S2a'(E) - V "12 (2012  - -  013 - -  014 - -  023 - -  024 "{- 2034)  

1 
S 2 b ' ( E ) -  V /12 ( -0 ' 2  + 20'3 - 0 ' 4 -  023 + 2024 - -  034) 

1 
S3a,, (T2) = ~ - i ~ ( 3 r l  - r2 - r3 - r4) 

1 
S3b,, (T2) : ---7-- (--r ,  + 3r 2 -- r 3 -- r4) 

V I L  

1 
S3c,,(T2) = ---77-~, ~ ( - - r , -  r 2 + 3r 3 -- r4) 

V l z  

1 
S3a,, (T2) • ----77~, ~ (--r1 -- r 2 -- r 3 + 3r 4) 

V l Z  

1 
S2c,(E ) -- . / 12 ( - -0 ,2  -- 0,3 + 2014 + 2023 - -  024  - -  034  ) .  

v (6) 
Displacements  along any one of  these special directions 
show co-kernel symmet ry  D2a. The labels a,b,c  are 
chosen to match  the labels of  $4(T2). 

It is immaterial  which set of  symmet ry  coordinates  is 
chosen, so the choice should be made  according to 
convenience. I f  several molecules are to be compared ,  it 
is useful to label the a toms according to some specific 
recipe, for example,  in order of  decreasing bond length, 
so that  corresponding displacement vectors lie in the 
same asymmetr ic  unit of  the vector  space defined by 
the symmet ry  coordinates.  

1 
S4a,, (72)~- ~ (012 -.I.- 013 -.I.- 0 1 4 -  0 2 3 -  0 2 4 -  034) 

V Q 

1 
8 4 b , ( 7 2 )  = ~ ( 0 1 2 - - 0 1 3 - - 0 1 4  -t'- 023 -'t'- 0 2 4 - - 0 3 4  ) 

V t, 

1 
S4c , , (T2)  --- ~ (--012 -4- 0 1 3 - - 0 1 4  -.[- 0 2 3 - - 0 2 4  -.I.- 034 ) 

V t, 

1 
S4d,, ( 7 2 )  = ~ (--012 - -  013 "l'- 014 - -  023 "~- 024 "t'- 034 ) 

V t, (5) 

The resultant  of  two equal displacements along 
different C3v co-kernel directions is a displacement  along 
a C2v co-kernel direction. In other words,  a distortion of  
a te t rahedron conserving C2~ symmet ry  can be regar- 
ded as a combinat ion of  two equivalent distortions 

4.2. Numerical sample calculations 

As a numerical  example consider a strongly distorted 
PO 4 te t rahedron found in C d 2 P 2 0  7 with no crystal-  
lographically imposed symmet ry  (Calvo,  1969). Values 
of  bond lengths and angles have been recalculated f rom 
published coordinates:  

r I 1 . 6 4 5 A  012 102"87 ° 013 104-97 ° 014 104"89 ° 
r 2 1-558 023 113.12 024 116.81 
r 3 1.516 034 112.55.  
r 4 1.449 

The reference molecule is taken as a regular tetra- 
hedron, r 0 = 1.534 A (Murray-Rus t ,  Bfirgi & Dunitz,  
1975). We obtain 

DI(A 0 = 0 .016  A 
D3a(T2)= 0 .119  

D2a (E) = - 2 . 5  9 o 
D2b(E) = 1.89 
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D3b(T2) = 0.077 
D3c(T2)=  O.OIO 

D4a (T2)= - 6 . 8 4  
D40(T2)= --8.37 
04AT2)=-5.81 
Ds(A i) = -0 .66 .  

The length of the three-dimensional D3(T2) displace- 
ment vector is 0.142/it ,  that of D4(T2) is 12.28 °. The 
two vectors are nearly antiparallel with an angle of 
150 ° between them. The length of the two-dimensional 
D2(E) vector is 3.20 °. 

The angles between the D3(T2) displacement vector 
and the So, S 0, S¢ axes (corresponding to C2v co-kernel 
symmetries) are 33, 57 and 86 ° respectively. The angle 
between D3(T2) and the S3~, axis [corresponding to 
C 3 , ( x x x )  co-kernel symmetry] is also 33°; so as far as 
bond lengths are concerned the observed distortion is 
intermediate between one conserving C2, symmetry 
and one conserving C3, symmetry. The angle between 
Da(T2) and the $4~, axis is only 9 ° so that the bond- 
angle distortion is very nearly such as to preserve 
C3~(xxx)  symmetry. It may be convenient, therefore, to 
go over to the primed coordinate system: 

O3a,(T2) : 0" 119 A 
D3b,(T 2) = 0.062 
D 3 c , ( T 2 ) = O . 0 4 7  

D4o,(Tz) = --12.14 ° 
D4t,, (T2) -- 0.21 
O4c,(T2): - - 1 . 8 1  

where the C3~ co-kernel components are brought into 
prominence. The ratio D3~,(T2)/Da~,(T2) is about 
- 0 . 0 1 0  A deg -~ and similar values are found not only 
for other PO4 tetrahedra but also for many other 
tetrahedral molecules (Murray-Rust, Bfirgi & Dunitz, 
1975). As discussed in the following paper, such 
correlations between different kinds of displacement 
transforming as the same irreducible representation 
may provide information about features of the 
potential-energy surface of the molecules. 

4.3. Calcu la t ion  o f  C3v co-kerne l  a n d  a v e r a g e d  con- 
f i g u r a t i o n s  with inclusion o f  the r e d u n d a n t  coord ina te  

These values are nearly but not quite the same as those 
obtained by averaging the appropriate quantities in the 
distorted molecule: 

r~ v=  1-645A, ~ V = r ~ V = ~ V = 1 . 5 0 8 A .  

The discrepancy occurs because the C3, co-kernel 
configuration obtained by averaging is the resultant of 
summing over all  symmetry coordinates that preserve 
the C 3 axis along r 1, i.e. S3a,(T2) a n d  S1(A 1). 

With no restriction on the angles, the six angular 
symmetry coordinates would form an orthogonal 
vector set, but if the angles are to describe a 
geometrically feasible structure in three-dimensional 
space then the displacements along these coordinates 
are not independent. This means that each displace- 
ment can be expressed as a function of the other five; 
in particular, the displacement along the redundant 
angular symmetry coordinate Ss(A~) is a function of 
the three T 2 and the two E displacements. The analytic 
~nction involved is complicated (see determinant in § 
4.1). Unless the appropriate displacement along Ss(AI) 
is added to a kernel or co-kernel structure the bond 
angles will not satisfy the determinantal equation of § 
4.1 and the structure would be geometrically feasible 
only in a space of four or more dimensions (Mackay, 
1974). The corrections to be applied to the bond angles 
to make the structure feasible in three dimensions can 
be evaluated numerically or estimated from an approxi- 
mation formula (see Appendix). 

The bond angles obtained by adding the D4~,(T2) 
displacement to the reference structure (0o = 109"47 °) 
a r e  

1 
0'12 = 0'13 = 014 = 00 + ~ D4a, 

= 0 0  - t -1(012 q- 013 + 0 1 4 - - 0 2 3 - - 0 2 4 - - 0 3 4 )  = 1 0 4 " 5 1  ° ,  

1 
0~3 : 054 = 0~4 : 00 ~ D4a, 

There is no problem about the bond distances since 
no redundant coordinate is involved here. The bond 
lengths of the TE(C3v ) co-kerne~ configuration are 
obtained by adding the  O3a,(T~) displacement to the 
reference structure (r 0 = 1.534 A) 

43 
r' 1 = r o + --f- O3a, 

= r 0 + ¼ (3r I -- r 2 -- r 3 -- r4) = 1.637 A 

1 
r' z = r' 3 = r' 4 = r o ----7"~,~O3a, VIZ 

= r o -  ~ (3r 1 -  r 2 -  r 3 -  r4) = 1.500 A. 

~_. 00 __ 1 (012 + 013 ..1_ 014 __ 023 __ 024 __ 034) = 114.43 ° .  

In deriving these angles, the displacement along the 
redundant angular coordinate Ss(A 1) has been ignored, 
and as a consequence, the angles do not satisfy the 
determinantal equation, which, for C3v symmetry, takes 
the simple form 

COS 023 = (3 cos 2 012 -- 1)/2. 

For example, the value of 023 that corresponds to 012 = 
104.51 ° should be 113.94 rather than 114.43 °. Since 
the contribution from Ss(AI) affects all angles equally, 
corrected values for the angles can be calculated from 

cos (023 + e ) =  [3 cos2(012 + t ) - -  1]/2. 
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The correction e is --0.27 ° and the corrected angles of 
the C3~ co-kernel configuration are 0'12 = 104.24, 0~3 = 
I14.16 °, equal to the values obtained by averaging. 
This comes about because, for our example, the value 
of Ds(A ~) is more sensitive to D4a,(T2)than to the other 
angular displacements and because the latter are small. 
The above angles are self-consistent within 0.01 o, i.e. in 
this case the averaged structure corresponds very 
closely to a feasible configuration. In general, for non- 
infinitesimal distortions from T a symmetry, angles 
obtained by averaging will not satisfy the feasibility 
condition exactly. Analogous considerations have to be 
applied for other types of averaging and for other types 
of kernel or co-kernel configuration. 

5. Approximate symmetry 

along nt-S4a,(T2). With C(2) as apex, D would point 
along + S4b,, (T 2) for exact trigonal symmetry. 
Evaluation of the actual displacement vector D yields 
D4a, = 30.6 °, Dab, : - - 3 . 5  ° ,  D4c, : 0. Thus, the largest 
component is along + S4a, and the angle between D and 
+ S4~, is only 6°; the angle between D and --Sab,, is 64 ° 
It is therefore clear that the observed angle deformation 
at the Si atom is much closer to (3) than to (2). 

The literature abounds with loose descriptions of 
structures as corresponding to 'approximately sym- 
metrical' arrangements of one kind or another. Since 
the ideas outlined in this paper may be generalized to 
(3 N -- 6)-dimensional spaces of any symmetry, they can 
be applied to provide a measure of deviations from 
symmetric reference structures and, thereby, a general 
basis for defining approximate symmetry. 

As an example of the utility of symmetry coordinates 
for describing approximate symmetries we discuss 
some results obtained in a recent gas-phase electron 
diffraction study of 1-methyl- 1-silabicyclo[2.2.1 ]- 
heptane (Hildebrandt, Horner & Boudjouk 1976, 
hereinafter HHB). In this molecule the bond angles 
at Si were found to be: (t12 = 119, ttl3 = (t14 -~- 122, 
(123 = 0124 = 95 ,  (1~34 ~ 98  ° [ f o r  numbering see (l); 
the angles given correspond to model III of HHB, 
other models tested yielding only slightly different 
values]. The observed angles were interpreted by HHB 
in terms of a geometry 'quite close to that of a trigonal 
bipyramid' (2) with C(2) at the apex and C(1), C(3), 
C(4) as equatorial groups. An attacking nucleophile 
'could occupy the other apex of a nearly perfect 
trigonal bipyramidal transition state'. 

C1 1._ 1 

Si 2 

2 J ~  ~ 3 
C3 

(1) (2) (3) 

Inspection of the above angles suggests that a more 
accurate description would be in terms of a distorted 
tetrahedral coordination that still retains an approxi- 
mate threefold axis, but passing through C(1) rather 
than C(2) and with C(2), C(3), C(4) squeezed together 
(3) rather than with C(1), C(3), C(4) spread apart (2). 
The actual angles do not show exact threefold symmetry 
but are somewhere between situations (2) and (3). 
Qualitatively, (3) seems a better description than (2) 
because a23 is closer to a34 than to a~2, and this 
impression is confirmed by transforming to symmetry 
coordinates. 

For a deformation maintaining exact trigonal sym- 
metry with C(1) as apex, the angular deformation 
components D4b,(T2) , D4c,(T2) , DEa(E ) and D2b(E ) are 
zero, i.e. the displacement vector D points exactly 

APPENDIX 

Formulae for producing feasible from unfeasible tet- 
rahedrai angles obtained from averaged or co-kernel 

configurations 

The six bond angles in an M X  4 molecule must satisfy 
the determinantal equation 

 os0 cos0  osii i 
0~2 1 cos 023 cos 

R = cos 013 cos 023 cos 
cos 014 cos 024 cos 034 1 

= 0 .  

The influence of rounding-off errors on the value of R 
can be seen from the following tabulation (all 0 u equal): 

gig= 109.47122 R = 7.1 × 10 -s 
109.471 2.6 x 10 -5 
109.5 3.4 X 1 0  - 3  

109 5.4 x 10 -2. 

For any arbitrary set of six angles 0 o we can obtain a 
more self-consistent set of angles 0~/ = 0 u + e by 
expanding R around the gig's to first order and by 
recycling to the desired degree of self-consistency; 

cos 0~ = cos 0 u - e sin 0 u = C u - e So~ 

R =  1 -  Z ( C ~ -  2 e S u C u )  

+ F__ ( c ~ , c  ~j,,- ~ s .  c i ,  c]~ - ~ c~,sjk cj,,) 
i~j:~l~k 

+ 2 ~ (ci jcjk  cik - ~ soc j k  ct~ - ~ cijsgk Cik 
i :~ j:~ k 

- ~ CuCjkSik) 

--  2 ~. ( C i j C k i C i i C i Q - -  E S i j C k i C i l C k j  
i¢j:~k~l 

- -  e Cig Sk i  Cil Cl~ i - -  e Cij  Ckl S i l  CIQ 

- e C U Ck~ C ,  S ~ ) .  
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If the angles 0ij are related by symmetry, e.g. as in a 
kernel, co-kernel or averaged configuration, it may be 
simpler to use the explicit relations between the angles: 

C3v(xxx): 2 cos (023 +/~) = 3 cos2(0,2 + t~) -  1 

D2d(X): cos(012 + t) + 2 COS(013 -t- ~) = --1  

D2: cos (012 + t0 + c0s(013 -t- ~) q- cos (014 -~- ~ ) =  - 1  

C2v(x): 4 COS2(013 -t- ~) = [1 + cos (012 + e)] 

× [ 1 + cos  (034 + t)] 

C2(x): [cos(O,3 + e) + cos (0,0 + e)]2 
=[1  + cos(Ol2 --[- e)][1 + c0s(034 + ~)] 

C2(xyy): 2[c0s2(013 + e) + COS2(023 + C ) - - 2  COS (012 + e) 

X COS (013 + ~)COS (023 + e)] 
= sin2(O12 + t)[1 + cos  (034 + e)]. 
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Deformations of PO 4, SO a and mlCl 4 fragments observed in crystals are analysed in terms of symmetry 
coordinates and internal coordinates. Various correlations among individual components of the total 
deformation are described and used to derive features of the potential-energy hypersurface of tetrahedrai MX 4 
fragments. Some of the observed correlations for all three systems can be described by a common numerical 
function based on the Pauling bond-number concept. 

1. General background 

Many M X  a molecules that are known or expected to 
show T a symmetry as isolated particles deviate from 
this symmetry in crystal environments. The observed 
distortions have been related to models of 
intramolecular bonding (McDonald & Cruickshank, 
1967; Bartell, Su & Yow, 1970; Lager & Gibbs, 1973) 
as well as to the influence of the crystal environment 

(McGinnety, 1972). The interdependence of bond- 
length and bond-angle variations has been studied 
empirically by Baur (1970, 1974) and by Brown & 
Shannon (1973). 

In this paper we adopt a different point of  view. Our 
premise is that any correlation found among indepen- 
dent parameters defining the structure of a given 
fragment, e.g. M X  a, in a variety of environments maps 
a region of low potential energy on the corresponding 


